3
$ \ $请将BeginGroup

Fuzzy logic is typically used in control theory and engineering applications, but is it connected fundamentally to classification systems?

一旦我有一个训练的神经网络(多输入,一个输出),我有一个非线性函数,会变成一组输入到一个数字,将估计我的组给定的输入有多接近训练有素的集合。

由于我的输出数表征“亲近”训练集为连续数,是不是这种固有的某种模糊分类的?

有没有在这里的逻辑有着很深的联系,还是我失去了一些东西?

| 改善这个问题 | |
$\endgroup$

    1 Answer1

    1
    $ \ $请将BeginGroup

    他们是无关的。

    有解释模糊值的概率,但严格来说它们是不同的可能性:模糊值模糊的,而概率反映可能性(看到维基百科条目的模糊逻辑)

    While rolling a particular number on a six-side die has a probability of$ 1 \超过600 $, a roll can actually only ever have one outcome.

    模糊值“很老”可以同时是一个数字的模糊集有不同程度的成员,例如“年轻”的成员与0.001,“青春期” 0.1,“老” 0.4,“古” 0.7。除非它是“模糊化”,它同时包含在所有的集合。

    Defuzzyfication是解释一系列模糊操作的结果,并且发现的一组最佳匹配的一种方法,但它不是一个明确定义的过程,例如根据一组概率选择一个随机数(或轧制模)。

    I am not sure that the sum of all fuzzy set membership values of any given fuzzy value has to add up to 1.0; whereas this condition has to hold for probabilities.

    [编辑:澄清 - 概率不一套;我这里指的是一个随机事件的所有可能结果具有被实现一定的概率。所有可能的事件概率的总和必须是1.0]

    One alternative interpretation for your application could be the置信度that the input set is identical to the training set. Which could be a fuzzy value if you wanted to do something else with it, eg by combining it with other fuzzy variables.

    $\endgroup$
    • $ \ $请将BeginGroup There is no such thing like a “set of probabilities”. A dice has always the chance of 1/6 for a certain side. A chance like “a little bit 1/6” or “very likely 1/6” doesn't make much sense. $\endgroup$曼努埃尔·罗德里格斯 2月19日在'19 10:37
    • $ \ $请将BeginGroup @ManuelRodriguez I'm not mentioning "sets of probabilities" anywhere. $\endgroup$奥利弗·梅森 2月19日在'19 11:02
    • $ \ $请将BeginGroup Are the outputs of neural nets explicit probabilities? Could you maybe link me to something that makes clear? Also, intuitively if you trained a neural network on pictures of bald men, somehow it's hard for me to believe that the "baldness" output is actually a probability of being bald. (Relative frequency makes some sense though) $\endgroup$Steven Sagona 2月19日在'19 23:43
    • $ \ $请将BeginGroup 这不是一个概率,它的权重分值。基本上,把一些特征值,论文被组合,加权,并通过激活函数过滤,然后在输出节点出来。因此,他们既不是概率也不模糊值。 $\endgroup$奥利弗·梅森 Feb 20 '19 at 9:29
    • $ \ $请将BeginGroup 好了,但现在我有点失去了为你的论点是什么。你说,模糊逻辑心不是连接到神经网络。但是,你的理由是,这是因为模糊逻辑是不一样的概率。但是,你给任何理由,为什么或如何概率连接到神经网络。所以首先谈论的概率是什么你的观点? $\endgroup$Steven Sagona Feb 20 '19 at 21:17

    Your Answer

    By clicking “Post Your Answer”, you agree to ourterms of service,privacy policyCookie政策

    Not the answer you're looking for? Browse other questions tagged要么ask your own question.